Ensemble 2: gravity spacings vs noise; no regional field¶
*using true density contrast
This notebooks performs 100 synthetic inversions, with all combinations of 10 values of gravity flight line spacing, and 10 values of the gravity data noise. There is no regional gravity field. For each inversion, we assume we know the true density contrast values, which was used to create the synthetic data.
import packages
[1]:
%load_ext autoreload
%autoreload 2
import itertools
import logging
import os
import pathlib
import pickle
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pygmt
import scipy
import verde as vd
import xarray as xr
from invert4geom import inversion, plotting, regional, utils
from invert4geom import synthetic as inv_synthetic
from polartoolkit import fetch, maps
from polartoolkit import utils as polar_utils
from tqdm.autonotebook import tqdm
import synthetic_bathymetry_inversion.plotting as synth_plotting
from synthetic_bathymetry_inversion import synthetic
os.environ["POLARTOOLKIT_HEMISPHERE"] = "south"
logging.getLogger().setLevel(logging.INFO)
/home/mdtanker/miniforge3/envs/synthetic_bathymetry_inversion/lib/python3.12/site-packages/UQpy/__init__.py:6: UserWarning:
pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.
[2]:
ensemble_path = "../results/Ross_Sea/ensembles/Ross_Sea_ensemble_02_grav_spacing_vs_noise_no_regional_true_density"
ensemble_fname = f"{ensemble_path}.csv"
[3]:
# set grid parameters
spacing = 2e3
inversion_region = (-40e3, 110e3, -1600e3, -1400e3)
true_density_contrast = 1476
bathymetry, _, original_grav_df = synthetic.load_synthetic_model(
spacing=spacing,
inversion_region=inversion_region,
buffer=spacing * 10,
basement=False,
zref=0,
bathymetry_density_contrast=true_density_contrast,
)
buffer_region = polar_utils.get_grid_info(bathymetry)[1]
requested spacing (2000.0) is smaller than the original (5000.0).
[4]:
bathymetry = bathymetry.sel(
easting=slice(inversion_region[0], inversion_region[1]),
northing=slice(inversion_region[2], inversion_region[3]),
)
[5]:
original_grav_df = original_grav_df.drop(columns=["basement_grav", "disturbance"])
original_grav_df = original_grav_df.rename(
columns={"gravity_anomaly": "gravity_anomaly_full_res_no_noise"},
)
original_grav_df
[5]:
| northing | easting | upward | bathymetry_grav | gravity_anomaly_full_res_no_noise | |
|---|---|---|---|---|---|
| 0 | -1600000.0 | -40000.0 | 1000.0 | -35.551055 | -35.551055 |
| 1 | -1600000.0 | -38000.0 | 1000.0 | -36.054658 | -36.054658 |
| 2 | -1600000.0 | -36000.0 | 1000.0 | -36.473147 | -36.473147 |
| 3 | -1600000.0 | -34000.0 | 1000.0 | -36.755609 | -36.755609 |
| 4 | -1600000.0 | -32000.0 | 1000.0 | -36.951029 | -36.951029 |
| ... | ... | ... | ... | ... | ... |
| 7671 | -1400000.0 | 102000.0 | 1000.0 | -25.760090 | -25.760090 |
| 7672 | -1400000.0 | 104000.0 | 1000.0 | -25.911429 | -25.911429 |
| 7673 | -1400000.0 | 106000.0 | 1000.0 | -26.032814 | -26.032814 |
| 7674 | -1400000.0 | 108000.0 | 1000.0 | -26.121903 | -26.121903 |
| 7675 | -1400000.0 | 110000.0 | 1000.0 | -26.206160 | -26.206160 |
7676 rows × 5 columns
[6]:
# semi-regularly spaced
constraint_points = synthetic.constraint_layout_number(
shape=(6, 7),
region=inversion_region,
padding=-spacing,
shapefile="../results/Ross_Sea/Ross_Sea_outline.shp",
add_outside_points=True,
grid_spacing=spacing,
)
# sample true topography at these points
constraint_points = utils.sample_grids(
constraint_points,
bathymetry,
"true_upward",
coord_names=("easting", "northing"),
)
constraint_points["upward"] = constraint_points.true_upward
constraint_points.head()
[6]:
| northing | easting | inside | true_upward | upward | |
|---|---|---|---|---|---|
| 0 | -1600000.0 | -40000.0 | False | -601.093994 | -601.093994 |
| 1 | -1600000.0 | -38000.0 | False | -609.216919 | -609.216919 |
| 2 | -1600000.0 | -36000.0 | False | -616.355957 | -616.355957 |
| 3 | -1600000.0 | -34000.0 | False | -621.262268 | -621.262268 |
| 4 | -1600000.0 | -32000.0 | False | -625.510925 | -625.510925 |
[7]:
# calculate constraints median distance
grd = bathymetry.sel(
easting=slice(*inversion_region[:2]), northing=slice(*inversion_region[2:])
)
grd = fetch.resample_grid(grd, spacing=100, verbose="q").rename(
{"x": "easting", "y": "northing"}
)
min_dist = utils.dist_nearest_points(
constraint_points,
grd,
).min_dist
print(f"Median constraint proximity overall: {int(min_dist.median().to_numpy())} m")
# mask to the ice shelf outline
min_dist = polar_utils.mask_from_shp(
shapefile="../results/Ross_Sea/Ross_Sea_outline.shp",
grid=min_dist,
invert=False,
masked=True,
)
print(f"median minimum proximity inside: {int(min_dist.median().to_numpy())} m")
requested spacing (100) is smaller than the original (2000.0).
Median constraint proximity overall: 7978 m
median minimum proximity inside: 8557 m
[8]:
# grid the sampled values using verde
starting_topography_kwargs = dict(
method="splines",
region=buffer_region,
spacing=spacing,
constraints_df=constraint_points,
dampings=None,
)
starting_bathymetry = utils.create_topography(**starting_topography_kwargs)
starting_bathymetry
[8]:
<xarray.DataArray 'scalars' (northing: 121, easting: 96)> Size: 93kB
array([[-541.24413873, -544.5718119 , -547.92293692, ..., -360.00006254,
-357.06767408, -354.19957767],
[-543.34402691, -546.81675806, -550.35256336, ..., -362.90253226,
-359.96874158, -357.11431886],
[-545.05533625, -548.66036841, -552.37518166, ..., -365.66137905,
-362.73269531, -359.90052824],
...,
[-591.95335283, -595.518822 , -599.06869706, ..., -440.89315876,
-440.6944619 , -440.40553782],
[-590.53134834, -594.09076638, -597.64079288, ..., -440.69158328,
-440.42525249, -440.07197235],
[-589.16632671, -592.73504778, -596.3020968 , ..., -440.51760948,
-440.17139321, -439.74434038]], shape=(121, 96))
Coordinates:
* easting (easting) float64 768B -6e+04 -5.8e+04 ... 1.28e+05 1.3e+05
* northing (northing) float64 968B -1.62e+06 -1.618e+06 ... -1.38e+06
Attributes:
metadata: Generated by SplineCV(cv=KFold(n_splits=5, random_state=0, shu...
damping: None[9]:
inner_starting_bathymetry = starting_bathymetry.sel(
easting=slice(inversion_region[0], inversion_region[1]),
northing=slice(inversion_region[2], inversion_region[3]),
)
starting_bathymetry_rmse = utils.rmse(bathymetry - inner_starting_bathymetry)
[10]:
# sample the inverted topography at the constraint points
constraint_points = utils.sample_grids(
constraint_points,
starting_bathymetry,
"starting_bathymetry",
coord_names=("easting", "northing"),
)
rmse = utils.rmse(constraint_points.true_upward - constraint_points.starting_bathymetry)
print(f"RMSE: {rmse:.2f} m")
RMSE: 0.03 m
[11]:
# compare starting and actual bathymetry grids
grids = polar_utils.grd_compare(
bathymetry,
starting_bathymetry,
fig_height=10,
plot=True,
cmap="rain",
reverse_cpt=True,
diff_cmap="balance+h0",
grid1_name="True bathymetry",
grid2_name="Starting bathymetry",
title="Difference",
title_font="18p,Helvetica-Bold,black",
cbar_unit="m",
cbar_label="elevation",
RMSE_decimals=0,
region=inversion_region,
inset=False,
hist=True,
label_font="16p,Helvetica,black",
points=constraint_points.rename(columns={"easting": "x", "northing": "y"}),
points_style="x.2c",
)
[13]:
# set the reference level from the prisms to 0
zref = 0
density_grid = xr.where(
starting_bathymetry >= zref,
true_density_contrast,
-true_density_contrast,
)
# create layer of prisms
starting_prisms = utils.grids_to_prisms(
starting_bathymetry,
zref,
density=density_grid,
)
original_grav_df["starting_gravity"] = starting_prisms.prism_layer.gravity(
coordinates=(
original_grav_df.easting,
original_grav_df.northing,
original_grav_df.upward,
),
field="g_z",
progressbar=True,
)
original_grav_df
[13]:
| northing | easting | upward | bathymetry_grav | gravity_anomaly_full_res_no_noise | starting_gravity | |
|---|---|---|---|---|---|---|
| 0 | -1600000.0 | -40000.0 | 1000.0 | -35.551055 | -35.551055 | -35.578561 |
| 1 | -1600000.0 | -38000.0 | 1000.0 | -36.054658 | -36.054658 | -36.042642 |
| 2 | -1600000.0 | -36000.0 | 1000.0 | -36.473147 | -36.473147 | -36.460095 |
| 3 | -1600000.0 | -34000.0 | 1000.0 | -36.755609 | -36.755609 | -36.784649 |
| 4 | -1600000.0 | -32000.0 | 1000.0 | -36.951029 | -36.951029 | -36.998469 |
| ... | ... | ... | ... | ... | ... | ... |
| 7671 | -1400000.0 | 102000.0 | 1000.0 | -25.760090 | -25.760090 | -25.498180 |
| 7672 | -1400000.0 | 104000.0 | 1000.0 | -25.911429 | -25.911429 | -25.673780 |
| 7673 | -1400000.0 | 106000.0 | 1000.0 | -26.032814 | -26.032814 | -25.808792 |
| 7674 | -1400000.0 | 108000.0 | 1000.0 | -26.121903 | -26.121903 | -25.904533 |
| 7675 | -1400000.0 | 110000.0 | 1000.0 | -26.206160 | -26.206160 | -25.981733 |
7676 rows × 6 columns
Set line spacings and noise levels¶
[14]:
num = 10
# Define number of flights lines on log scale
grav_line_numbers = np.unique(np.round(np.geomspace(3, 30, num)))
grav_line_numbers = [int(i) for i in grav_line_numbers]
assert len(grav_line_numbers) == num
# Define noise levels for grav data
grav_noise_levels = [float(round(x, 2)) for x in np.linspace(0, 5, num)]
print("number of grav lines:", grav_line_numbers)
print("grav noise levels:", grav_noise_levels)
number of grav lines: [3, 4, 5, 6, 8, 11, 14, 18, 23, 30]
grav noise levels: [0.0, 0.56, 1.11, 1.67, 2.22, 2.78, 3.33, 3.89, 4.44, 5.0]
[15]:
# turn into dataframe
sampled_params_df = pd.DataFrame(
itertools.product(
grav_line_numbers,
grav_noise_levels,
),
columns=[
"grav_line_numbers",
"grav_noise_levels",
],
)
sampled_params_dict = dict(
grav_line_numbers=dict(sampled_values=sampled_params_df.grav_line_numbers),
grav_noise_levels=dict(sampled_values=sampled_params_df.grav_noise_levels),
)
plotting.plot_latin_hypercube(
sampled_params_dict,
)
[16]:
sampled_params_df
[16]:
| grav_line_numbers | grav_noise_levels | |
|---|---|---|
| 0 | 3 | 0.00 |
| 1 | 3 | 0.56 |
| 2 | 3 | 1.11 |
| 3 | 3 | 1.67 |
| 4 | 3 | 2.22 |
| ... | ... | ... |
| 95 | 30 | 2.78 |
| 96 | 30 | 3.33 |
| 97 | 30 | 3.89 |
| 98 | 30 | 4.44 |
| 99 | 30 | 5.00 |
100 rows × 2 columns
Contaminate gravity with noise¶
[17]:
# fnames to save files for each ensemble
sampled_params_df["grav_df_fname"] = pd.Series()
for i, row in tqdm(sampled_params_df.iterrows(), total=len(sampled_params_df)):
# set file names, add to dataframe
sampled_params_df.loc[i, "grav_df_fname"] = f"{ensemble_path}_grav_df_{i}.csv"
[18]:
grav_grid = original_grav_df.set_index(["northing", "easting"]).to_xarray()
for i, row in tqdm(sampled_params_df.iterrows(), total=len(sampled_params_df)):
grav_df = original_grav_df.copy()
# contaminated with long-wavelength noise
grav_df["gravity_anomaly_full_res"] = grav_df.gravity_anomaly_full_res_no_noise
with utils._log_level(logging.ERROR):
contaminated = inv_synthetic.contaminate_with_long_wavelength_noise(
grav_grid.gravity_anomaly_full_res_no_noise,
coarsen_factor=None,
spacing=2e3,
noise_as_percent=False,
noise=row.grav_noise_levels,
)
contaminated_df = vd.grid_to_table(
contaminated.rename("gravity_anomaly_full_res")
).reset_index(drop=True)
grav_df = pd.merge( # noqa: PD015
grav_df.drop(columns=["gravity_anomaly_full_res"], errors="ignore"),
contaminated_df,
on=["easting", "northing"],
)
# # short-wavelength noise
# with utils._log_level(logging.ERROR):
# contaminated = synthetic.contaminate_with_long_wavelength_noise(
# grav_df.set_index(["northing", "easting"])
# .to_xarray()
# .gravity_anomaly_full_res,
# coarsen_factor=None,
# spacing=spacing * 2,
# noise_as_percent=False,
# noise=row.grav_noise_levels,
# )
# contaminated_df = vd.grid_to_table(
# contaminated.rename("gravity_anomaly_full_res")
# ).reset_index(drop=True)
# grav_df = pd.merge(
# grav_df.drop(columns=["gravity_anomaly_full_res"], errors="ignore"),
# contaminated_df,
# on=["easting", "northing"],
# )
# add noise level to uncert column
grav_df["uncert"] = row.grav_noise_levels
# save to files
grav_df.to_csv(row.grav_df_fname, index=False)
sampled_params_df.head()
[18]:
| grav_line_numbers | grav_noise_levels | grav_df_fname | |
|---|---|---|---|
| 0 | 3 | 0.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 1 | 3 | 0.56 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 2 | 3 | 1.11 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 3 | 3 | 1.67 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 4 | 3 | 2.22 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
[19]:
sampled_params_df.to_csv(ensemble_fname, index=False)
[20]:
sampled_params_df = pd.read_csv(ensemble_fname)
sampled_params_df.head()
[20]:
| grav_line_numbers | grav_noise_levels | grav_df_fname | |
|---|---|---|---|
| 0 | 3 | 0.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 1 | 3 | 0.56 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 2 | 3 | 1.11 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 3 | 3 | 1.67 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 4 | 3 | 2.22 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
[21]:
# subplots showing grav data loss from sampling
grids = []
titles = []
cbar_labels = []
for i, row in sampled_params_df.iterrows():
if i < num:
grav_df = pd.read_csv(row.grav_df_fname)
grav_grid = grav_df.set_index(["northing", "easting"]).to_xarray()
dif = (
grav_grid.gravity_anomaly_full_res_no_noise
- grav_grid.gravity_anomaly_full_res
)
# add to lists
grids.append(dif)
titles.append(f"noise level: {round(row.grav_noise_levels, 1)} mGal")
cbar_labels.append(f"RMSE: {round(utils.rmse(dif), 2)} (mGal)")
fig = maps.subplots(
grids,
fig_title="Gravity noise",
titles=titles,
cbar_labels=cbar_labels,
cmap="balance+h0",
hist=True,
cpt_lims=polar_utils.get_combined_min_max(grids, robust=True),
cbar_font="18p,Helvetica,black",
yshift_amount=-1.2,
)
fig.show()
Sample along flightlines¶
[22]:
# fnames to save files for each ensemble
sampled_params_df["grav_survey_df_fname"] = pd.Series()
for i, row in tqdm(sampled_params_df.iterrows(), total=len(sampled_params_df)):
# set file names, add to dataframe
sampled_params_df.loc[i, "grav_survey_df_fname"] = (
f"{ensemble_path}_grav_survey_df_{i}.csv"
)
[23]:
logging.getLogger().setLevel(logging.WARNING)
# add empty columns
# average of the east/west and north/south line spacings
sampled_params_df["grav_line_spacing"] = pd.Series()
for i, row in tqdm(sampled_params_df.iterrows(), total=len(sampled_params_df)):
# load data
grav_df = pd.read_csv(row.grav_df_fname)
# create flight lines
grav_survey_df = synthetic.airborne_survey(
along_line_spacing=500,
grav_observation_height=1e3,
ns_line_number=row.grav_line_numbers,
ew_line_number=row.grav_line_numbers,
region=inversion_region,
grav_grid=grav_df.set_index(["northing", "easting"])
.to_xarray()
.gravity_anomaly_full_res,
plot=False,
)
x_spacing = (inversion_region[1] - inversion_region[0]) / row.grav_line_numbers
y_spacing = (inversion_region[3] - inversion_region[2]) / row.grav_line_numbers
grav_line_spacing = ((x_spacing + y_spacing) / 2) / 1e3
# sample no-noise grid onto survey lines
grav_survey_df = utils.sample_grids(
grav_survey_df,
grav_df.set_index(
["northing", "easting"]
).gravity_anomaly_full_res_no_noise.to_xarray(),
sampled_name="gravity_anomaly_no_noise",
)
# add to dataframe
sampled_params_df.loc[i, "grav_line_spacing"] = grav_line_spacing
# save to files
grav_survey_df.to_csv(row.grav_survey_df_fname, index=False)
sampled_params_df
[23]:
| grav_line_numbers | grav_noise_levels | grav_df_fname | grav_survey_df_fname | grav_line_spacing | |
|---|---|---|---|---|---|
| 0 | 3 | 0.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 |
| 1 | 3 | 0.56 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 |
| 2 | 3 | 1.11 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 |
| 3 | 3 | 1.67 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 |
| 4 | 3 | 2.22 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 |
| ... | ... | ... | ... | ... | ... |
| 95 | 30 | 2.78 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 |
| 96 | 30 | 3.33 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 |
| 97 | 30 | 3.89 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 |
| 98 | 30 | 4.44 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 |
| 99 | 30 | 5.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 |
100 rows × 5 columns
[24]:
sampled_params_df["grav_proximity"] = np.nan
sampled_params_df["grav_proximity_skew"] = np.nan
for i, row in sampled_params_df.iterrows():
# load data
grav_survey_df = pd.read_csv(row.grav_survey_df_fname)
# calc min distance
coords = vd.grid_coordinates(
region=inversion_region,
spacing=100,
)
grid = vd.make_xarray_grid(coords, np.ones_like(coords[0]), data_names="z").z
min_dist = utils.dist_nearest_points(
grav_survey_df,
grid,
).min_dist
grav_proximity = min_dist.median().to_numpy() / 1e3
sampled_params_df.loc[i, "grav_proximity"] = grav_proximity
sampled_params_df.loc[i, "grav_proximity_skew"] = scipy.stats.skew(
min_dist.to_numpy().ravel(), nan_policy="omit"
)
(
sampled_params_df.grav_proximity.describe(),
sampled_params_df.grav_proximity_skew.describe(),
)
[24]:
(count 100.000000
mean 3.430303
std 2.368128
min 0.824621
25% 1.400000
50% 2.704055
75% 5.001000
max 8.333333
Name: grav_proximity, dtype: float64,
count 100.000000
mean 0.504258
std 0.015236
min 0.489544
25% 0.491777
50% 0.498486
75% 0.513887
max 0.537052
Name: grav_proximity_skew, dtype: float64)
[25]:
w = np.abs(inversion_region[1] - inversion_region[0]) / 1e3
h = np.abs(inversion_region[3] - inversion_region[2]) / 1e3
w, h
[25]:
(np.float64(150.0), np.float64(200.0))
[26]:
sampled_params_df["flight_kms"] = pd.Series()
for i, row in sampled_params_df.iterrows():
survey_df = pd.read_csv(row.grav_survey_df_fname)
# flight km is length of lines in km X number of lines
sampled_params_df.loc[i, "flight_kms"] = (
w * row.grav_line_numbers + h * row.grav_line_numbers
)
sampled_params_df.flight_kms.unique()
[26]:
array([np.float64(1050.0), np.float64(1400.0), np.float64(1750.0),
np.float64(2100.0), np.float64(2800.0), np.float64(3850.0),
np.float64(4900.0), np.float64(6300.0), np.float64(8050.0),
np.float64(10500.0)], dtype=object)
[27]:
inversion_area = (
(inversion_region[1] - inversion_region[0])
/ 1e3
* (inversion_region[3] - inversion_region[2])
/ 1e3
)
sampled_params_df["flight_kms_per_10000sq_km"] = (
(sampled_params_df.flight_kms / inversion_area) * 10e3
).astype(float)
sampled_params_df.flight_kms_per_10000sq_km.unique()
[27]:
array([ 350. , 466.66666667, 583.33333333, 700. ,
933.33333333, 1283.33333333, 1633.33333333, 2100. ,
2683.33333333, 3500. ])
[28]:
df = sampled_params_df
y = "grav_proximity"
x = "grav_proximity_skew"
plt.plot(df[x], df[y], marker="o")
ax = plt.gca()
ax.set_xlabel(x)
ax.set_ylabel(y)
[28]:
Text(0, 0.5, 'grav_proximity')
[29]:
df = sampled_params_df
y = "grav_proximity"
x = "flight_kms"
plt.plot(df[x], df[y], marker="o")
ax = plt.gca()
ax.set_xlabel(x)
ax.set_ylabel(y)
[29]:
Text(0, 0.5, 'grav_proximity')
[30]:
df = sampled_params_df
y = "grav_proximity_skew"
x = "flight_kms"
plt.plot(df[x], df[y], marker="o")
ax = plt.gca()
ax.set_xlabel(x)
ax.set_ylabel(y)
[30]:
Text(0, 0.5, 'grav_proximity_skew')
Filter flight line data¶
[31]:
# add empty columns
sampled_params_df["filter_width_trials_fname"] = np.nan
for i, row in tqdm(sampled_params_df.iterrows(), total=len(sampled_params_df)):
# set file names, add to dataframe
sampled_params_df.loc[i, "filter_width_trials_fname"] = (
f"{ensemble_path}_filter_width_trials_{i}.csv"
)
[32]:
logging.getLogger().setLevel(logging.WARNING)
for i, row in tqdm(sampled_params_df.iterrows(), total=len(sampled_params_df)):
# load data
grav_df = pd.read_csv(row.grav_df_fname)
grav_survey_df = pd.read_csv(row.grav_survey_df_fname)
# trial a range of 1D low-pass filters and see which performs best
dfs = []
filter_widths = np.arange(0, 80e3, 4e3)
for f in filter_widths:
survey_df = grav_survey_df.copy()
if f == 0:
survey_df["grav_anomaly_filt"] = survey_df.gravity_anomaly
else:
survey_df["grav_anomaly_filt"] = synthetic.filter_flight_lines(
survey_df,
data_column="gravity_anomaly",
filt_type=f"g{f}",
)
# compared filtered line data with no-noise line data
survey_df["dif"] = (
survey_df.gravity_anomaly_no_noise - survey_df.grav_anomaly_filt
)
dfs.append(
pd.DataFrame(
[
{
"filt_width": f,
"rmse": utils.rmse(survey_df.dif),
}
]
)
)
filter_width_trials = pd.concat(dfs, ignore_index=True)
# save to files
filter_width_trials.to_csv(row.filter_width_trials_fname, index=False)
sampled_params_df
[32]:
| grav_line_numbers | grav_noise_levels | grav_df_fname | grav_survey_df_fname | grav_line_spacing | grav_proximity | grav_proximity_skew | flight_kms | flight_kms_per_10000sq_km | filter_width_trials_fname | |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 3 | 0.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 1 | 3 | 0.56 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 2 | 3 | 1.11 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 3 | 3 | 1.67 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 4 | 3 | 2.22 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 95 | 30 | 2.78 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 96 | 30 | 3.33 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 97 | 30 | 3.89 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 98 | 30 | 4.44 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 99 | 30 | 5.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
100 rows × 10 columns
[33]:
# add empty columns
sampled_params_df["best_filter_width"] = np.nan
for i, row in tqdm(sampled_params_df.iterrows(), total=len(sampled_params_df)):
# load data
filter_width_trials = pd.read_csv(row.filter_width_trials_fname)
best_ind = filter_width_trials.rmse.idxmin()
best_filter_width = filter_width_trials.iloc[best_ind].filt_width
sampled_params_df.loc[i, "best_filter_width"] = best_filter_width
sampled_params_df
[33]:
| grav_line_numbers | grav_noise_levels | grav_df_fname | grav_survey_df_fname | grav_line_spacing | grav_proximity | grav_proximity_skew | flight_kms | flight_kms_per_10000sq_km | filter_width_trials_fname | best_filter_width | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 3 | 0.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 0.0 |
| 1 | 3 | 0.56 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 16000.0 |
| 2 | 3 | 1.11 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 28000.0 |
| 3 | 3 | 1.67 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 32000.0 |
| 4 | 3 | 2.22 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 36000.0 |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 95 | 30 | 2.78 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 36000.0 |
| 96 | 30 | 3.33 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 40000.0 |
| 97 | 30 | 3.89 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 44000.0 |
| 98 | 30 | 4.44 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 48000.0 |
| 99 | 30 | 5.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 52000.0 |
100 rows × 11 columns
[34]:
df = sampled_params_df.copy()
norm = plt.Normalize(
vmin=df.grav_noise_levels.to_numpy().min(),
vmax=df.grav_noise_levels.to_numpy().max(),
)
fig, ax = plt.subplots()
for i, row in df.iterrows():
# load data
filter_width_trials = pd.read_csv(row.filter_width_trials_fname)
best_ind = filter_width_trials.rmse.idxmin()
ax.plot(
filter_width_trials.filt_width,
filter_width_trials.rmse,
color=plt.cm.viridis(norm(row.grav_noise_levels)), # pylint: disable=no-member
)
ax.set_xlabel("Filter width (m)")
ax.set_ylabel("RMSE (mGal)")
ax.scatter(
# x=filter_width_trials.filt_width.iloc[best_ind],
x=row.best_filter_width,
y=filter_width_trials.rmse.iloc[best_ind],
marker="*",
edgecolor="black",
linewidth=0.5,
color=plt.cm.viridis(norm(row.grav_noise_levels)), # pylint: disable=no-member
s=60,
zorder=20,
)
sm = plt.cm.ScalarMappable(cmap="viridis", norm=norm)
cax = fig.add_axes([0.93, 0.1, 0.05, 0.8])
cbar = plt.colorbar(sm, cax=cax)
cbar.set_label("noise level")
[35]:
# variable = grav_noise_levels
# title = "Gravity noise (mGal)"
variable = "grav_line_spacing"
title = "Line spacing (m)"
norm = plt.Normalize(
vmin=sampled_params_df[variable].to_numpy().min(),
vmax=sampled_params_df[variable].to_numpy().max(),
)
for i, row in tqdm(sampled_params_df.iterrows(), total=len(sampled_params_df)):
# load data
filter_width_trials = pd.read_csv(row.filter_width_trials_fname)
best_ind = filter_width_trials.rmse.idxmin()
best_filter_width = filter_width_trials.iloc[best_ind].filt_width
if i == 0:
fig, ax = plt.subplots()
ax.plot(
filter_width_trials.filt_width,
filter_width_trials.rmse,
color=plt.cm.viridis(norm(row[variable])), # pylint: disable=no-member
)
ax.set_xlabel("Filter width (m)")
ax.set_ylabel("RMSE (mGal)")
ax.scatter(
x=filter_width_trials.filt_width.iloc[best_ind],
y=filter_width_trials.rmse.iloc[best_ind],
marker="*",
edgecolor="black",
linewidth=0.5,
color=plt.cm.viridis(norm(row[variable])), # pylint: disable=no-member
s=60,
zorder=20,
)
sm = plt.cm.ScalarMappable(cmap="viridis", norm=norm)
cax = fig.add_axes([0.93, 0.1, 0.05, 0.8])
cbar = plt.colorbar(sm, cax=cax)
cbar.set_label(title)
sampled_params_df
[35]:
| grav_line_numbers | grav_noise_levels | grav_df_fname | grav_survey_df_fname | grav_line_spacing | grav_proximity | grav_proximity_skew | flight_kms | flight_kms_per_10000sq_km | filter_width_trials_fname | best_filter_width | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 3 | 0.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 0.0 |
| 1 | 3 | 0.56 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 16000.0 |
| 2 | 3 | 1.11 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 28000.0 |
| 3 | 3 | 1.67 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 32000.0 |
| 4 | 3 | 2.22 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 36000.0 |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 95 | 30 | 2.78 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 36000.0 |
| 96 | 30 | 3.33 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 40000.0 |
| 97 | 30 | 3.89 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 44000.0 |
| 98 | 30 | 4.44 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 48000.0 |
| 99 | 30 | 5.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 52000.0 |
100 rows × 11 columns
[36]:
fig = synth_plotting.plot_2var_ensemble(
sampled_params_df[sampled_params_df.grav_noise_levels > 0],
x="grav_line_spacing",
y="grav_noise_levels",
x_title="Line spacing (km)",
y_title="Gravity noise (mGal)",
background="best_filter_width",
background_title="Optimal filter width (m)",
background_robust=True,
constrained_layout=False,
)
[37]:
sampled_params_df.best_filter_width.plot.hist()
[37]:
<Axes: ylabel='Frequency'>
[38]:
logging.getLogger().setLevel(logging.WARNING)
for i, row in tqdm(sampled_params_df.iterrows(), total=len(sampled_params_df)):
# load data
grav_survey_df = pd.read_csv(row.grav_survey_df_fname)
# filter each line in 1D with a Gaussian filter to remove some noise
if row.best_filter_width == 0:
grav_survey_df["gravity_anomaly"] = grav_survey_df.gravity_anomaly
else:
grav_survey_df["gravity_anomaly"] = synthetic.filter_flight_lines(
grav_survey_df,
data_column="gravity_anomaly",
filt_type=f"g{row.best_filter_width}",
)
# save to files
grav_survey_df.to_csv(row.grav_survey_df_fname, index=False)
Interpolate flight line data¶
[39]:
logging.getLogger().setLevel(logging.WARNING)
# add empty columns
sampled_params_df["grav_data_loss_rmse"] = np.nan
sampled_params_df["grav_data_loss_mae"] = np.nan
for i, row in tqdm(sampled_params_df.iterrows(), total=len(sampled_params_df)):
# load data
grav_df = pd.read_csv(row.grav_df_fname)
grav_survey_df = pd.read_csv(row.grav_survey_df_fname)
grav_grid = pygmt.surface(
data=grav_survey_df[["easting", "northing", "gravity_anomaly"]],
region=inversion_region,
spacing=spacing,
tension=0.25,
verbose="q",
)
grav_df = utils.sample_grids(
grav_df,
grav_grid,
sampled_name="gravity_anomaly",
)
# add to dataframe
dif = grav_df.gravity_anomaly_full_res_no_noise - grav_df.gravity_anomaly
sampled_params_df.loc[i, "grav_data_loss_rmse"] = float(utils.rmse(dif))
sampled_params_df.loc[i, "grav_data_loss_mae"] = float(np.abs(dif).mean())
# save to files
grav_survey_df.to_csv(row.grav_survey_df_fname, index=False)
grav_df.to_csv(row.grav_df_fname, index=False)
sampled_params_df
[39]:
| grav_line_numbers | grav_noise_levels | grav_df_fname | grav_survey_df_fname | grav_line_spacing | grav_proximity | grav_proximity_skew | flight_kms | flight_kms_per_10000sq_km | filter_width_trials_fname | best_filter_width | grav_data_loss_rmse | grav_data_loss_mae | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 3 | 0.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 0.0 | 2.103457 | 1.163586 |
| 1 | 3 | 0.56 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 16000.0 | 2.117755 | 1.203714 |
| 2 | 3 | 1.11 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 28000.0 | 2.153094 | 1.262860 |
| 3 | 3 | 1.67 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 32000.0 | 2.181365 | 1.313212 |
| 4 | 3 | 2.22 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 36000.0 | 2.219025 | 1.367866 |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 95 | 30 | 2.78 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 36000.0 | 0.777220 | 0.597805 |
| 96 | 30 | 3.33 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 40000.0 | 0.884233 | 0.678400 |
| 97 | 30 | 3.89 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 44000.0 | 0.988483 | 0.756277 |
| 98 | 30 | 4.44 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 48000.0 | 1.087007 | 0.829231 |
| 99 | 30 | 5.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 52000.0 | 1.184134 | 0.901034 |
100 rows × 13 columns
[40]:
sampled_params_df.to_csv(ensemble_fname, index=False)
[41]:
sampled_params_df = pd.read_csv(ensemble_fname)
sampled_params_df.head()
[41]:
| grav_line_numbers | grav_noise_levels | grav_df_fname | grav_survey_df_fname | grav_line_spacing | grav_proximity | grav_proximity_skew | flight_kms | flight_kms_per_10000sq_km | filter_width_trials_fname | best_filter_width | grav_data_loss_rmse | grav_data_loss_mae | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 3 | 0.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 0.0 | 2.103457 | 1.163586 |
| 1 | 3 | 0.56 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 16000.0 | 2.117755 | 1.203714 |
| 2 | 3 | 1.11 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 28000.0 | 2.153094 | 1.262860 |
| 3 | 3 | 1.67 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 32000.0 | 2.181365 | 1.313212 |
| 4 | 3 | 2.22 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 36000.0 | 2.219025 | 1.367866 |
[42]:
fig = synth_plotting.plot_2var_ensemble(
sampled_params_df,
x="grav_line_spacing",
y="grav_noise_levels",
x_title="Line spacing (km)",
y_title="Gravity noise (mGal)",
background="grav_data_loss_rmse",
background_title="Gravity data RMSE (m)",
plot_title="Gravity spacing vs noise; low regional field",
constrained_layout=False,
)
[43]:
x = "grav_noise_levels"
fig = synth_plotting.plot_ensemble_as_lines(
sampled_params_df,
figsize=(4, 2),
x=x,
x_label="Gravity noise (mGal)",
y="grav_data_loss_rmse",
y_label="Gravity data RMSE (m)",
groupby_col="grav_line_spacing",
cbar_label="Line spacing (km)",
# logx=True,
)
[44]:
x = "grav_line_spacing"
fig = synth_plotting.plot_ensemble_as_lines(
sampled_params_df,
figsize=(4, 2),
x=x,
x_label="Line spacing (km)",
y="grav_data_loss_rmse",
y_label="Gravity data RMSE (m)",
groupby_col="grav_noise_levels",
cbar_label="Gravity noise (mGal)",
# logx=True,
)
[45]:
x = "grav_line_spacing"
fig = synth_plotting.plot_ensemble_as_lines(
sampled_params_df,
figsize=(4, 2),
x=x,
x_label="Line spacing (km)",
y="grav_data_loss_rmse",
y_label="Gravity data RMSE (m)",
groupby_col="grav_noise_levels",
cbar_label="Gravity noise (mGal)",
logx=True,
)
[46]:
# subplots showing grav data loss from sampling and noise
grids = []
cbar_labels = []
row_titles = []
column_titles = []
surveys = []
# iterate over the ensemble starting with high noise, low line numbers
# row per noise level and column per line spacing
for i, row in sampled_params_df.sort_values(
by=["grav_noise_levels", "grav_line_spacing"],
ascending=False,
).iterrows():
grav_df = pd.read_csv(row.grav_df_fname)
grav_grid = grav_df.set_index(["northing", "easting"]).to_xarray()
dif = grav_grid.gravity_anomaly_full_res_no_noise - grav_grid.gravity_anomaly
# add to lists
grids.append(dif)
cbar_labels.append(f"RMSE:{round(utils.rmse(dif), 2)}")
if i % num == 0:
column_titles.append(round(row.grav_line_spacing))
if i < num:
row_titles.append(round(row.grav_noise_levels, 1))
# get survey points
grav_survey_df = pd.read_csv(row.grav_survey_df_fname)
surveys.append(grav_survey_df)
fig = maps.subplots(
grids,
fig_height=8,
fig_title="Data loss from airborne surveying and noise",
fig_title_font="100p,Helvetica-Bold,black",
fig_x_axis_title="Line spacing (km)",
fig_y_axis_title="Gravity noise (mGal)",
fig_axis_title_font="80p,Helvetica-Bold,black",
fig_title_y_offset="8c",
# fig_x_axis_title_y_offset="-2.5c",
fig_y_axis_title_x_offset="3c",
cbar_labels=cbar_labels,
cmap="balance+h0",
# hist=True,
cpt_lims=polar_utils.get_combined_min_max(grids, robust=True),
cbar_font="18p,Helvetica,black",
row_titles=row_titles,
column_titles=column_titles,
point_sets=surveys,
points_style="p.02c",
yshift_amount=-1.2,
)
fig.show()
[47]:
# subplots showing true gravity and sampled-noisy gravity
grids = []
cbar_labels = []
row_titles = []
column_titles = []
df = sampled_params_df
# iterate over the ensemble starting with high noise, small line spacing
# row per noise level and column per line spacing
for i, row in df.sort_values(
by=["grav_noise_levels", "grav_line_spacing"], ascending=[False, True]
).iterrows():
grav_df = pd.read_csv(row.grav_df_fname)
grav_grid = grav_df.set_index(["northing", "easting"]).to_xarray()
# dif = grav_grid.gravity_anomaly_full_res_no_noise - grav_grid.gravity_anomaly
dif = grav_grid.gravity_anomaly_full_res_no_noise - grav_grid.gravity_anomaly
# add to lists
grids.append(grav_grid.gravity_anomaly_full_res_no_noise)
grids.append(grav_grid.gravity_anomaly)
cbar_labels.append(f"RMSE:{round(utils.rmse(dif), 2)}")
cbar_labels.append(" ")
if i % np.sqrt(len(df)) == 0:
column_titles.append(round(row.grav_line_spacing))
column_titles.append(" ")
if i < np.sqrt(len(df)):
row_titles.append(round(row.grav_noise_levels, 1))
# row_titles.append(" ")
fig = maps.subplots(
grids,
dims=(np.sqrt(len(df)), 2 * np.sqrt(len(df))),
fig_height=8,
fig_title="Low regional",
fig_x_axis_title="Flight line spacing (km)",
fig_y_axis_title="Gravity noise (mGal)",
fig_title_font="100p,Helvetica-Bold,black",
fig_axis_title_font="80p,Helvetica-Bold,black",
fig_title_y_offset="8c",
fig_x_axis_title_y_offset="2.5c",
fig_y_axis_title_x_offset="3c",
cbar_labels=cbar_labels,
cmaps=[x for xs in [["viridis"] * 2 for x in range(len(df))] for x in xs],
reverse_cpt=True,
# colorbar=False,
# hist=True,
# cpt_lims=polar_utils.get_combined_min_max(grids, robust=True),
cpt_limits=[
x
for xs in [
[polar_utils.get_combined_min_max(grids, robust=True)] * 2
for x in range(len(df))
]
for x in xs
],
cbar_font="45p,Helvetica,black",
row_titles=row_titles,
column_titles=column_titles,
row_titles_font="70p,Helvetica,black",
column_titles_font="70p,Helvetica,black",
yshift_amount=-1.3,
)
fig.show()
Estimate and separate regional¶
[48]:
regional_grav_kwargs = dict(
method="constant",
constraints_df=constraint_points,
)
[49]:
logging.getLogger().setLevel(logging.INFO)
for i, row in tqdm(sampled_params_df.iterrows(), total=len(sampled_params_df)):
# load data
grav_df = pd.read_csv(row.grav_df_fname)
# calculate the true residual misfit
grav_df["true_res"] = grav_df.bathymetry_grav - grav_df.starting_gravity
grav_df = regional.regional_separation(
grav_df=grav_df,
**regional_grav_kwargs,
)
# resave gravity dataframe
grav_df.to_csv(row.grav_df_fname, index=False)
sampled_params_df.head()
[49]:
| grav_line_numbers | grav_noise_levels | grav_df_fname | grav_survey_df_fname | grav_line_spacing | grav_proximity | grav_proximity_skew | flight_kms | flight_kms_per_10000sq_km | filter_width_trials_fname | best_filter_width | grav_data_loss_rmse | grav_data_loss_mae | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 3 | 0.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 0.0 | 2.103457 | 1.163586 |
| 1 | 3 | 0.56 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 16000.0 | 2.117755 | 1.203714 |
| 2 | 3 | 1.11 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 28000.0 | 2.153094 | 1.262860 |
| 3 | 3 | 1.67 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 32000.0 | 2.181365 | 1.313212 |
| 4 | 3 | 2.22 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 36000.0 | 2.219025 | 1.367866 |
[50]:
sampled_params_df.to_csv(ensemble_fname, index=False)
[51]:
sampled_params_df = pd.read_csv(ensemble_fname)
sampled_params_df.head()
[51]:
| grav_line_numbers | grav_noise_levels | grav_df_fname | grav_survey_df_fname | grav_line_spacing | grav_proximity | grav_proximity_skew | flight_kms | flight_kms_per_10000sq_km | filter_width_trials_fname | best_filter_width | grav_data_loss_rmse | grav_data_loss_mae | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 3 | 0.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 0.0 | 2.103457 | 1.163586 |
| 1 | 3 | 0.56 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 16000.0 | 2.117755 | 1.203714 |
| 2 | 3 | 1.11 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 28000.0 | 2.153094 | 1.262860 |
| 3 | 3 | 1.67 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 32000.0 | 2.181365 | 1.313212 |
| 4 | 3 | 2.22 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 36000.0 | 2.219025 | 1.367866 |
Inversion with true density contrast¶
[52]:
for i, row in sampled_params_df.iterrows():
# set results file name, add results file name
sampled_params_df.loc[i, "results_fname"] = f"{ensemble_path}_results_{i}"
sampled_params_df.loc[i, "inverted_bathymetry_fname"] = (
f"{ensemble_path}_inverted_bathymetry_{i}.nc"
)
[53]:
logging.getLogger().setLevel(logging.WARNING)
for i, row in tqdm(sampled_params_df.iterrows(), total=len(sampled_params_df)):
# load data
grav_df = pd.read_csv(row.grav_df_fname)
if row.grav_noise_levels == 0:
l2_norm_tolerance = 0.2**0.5
else:
l2_norm_tolerance = row.grav_noise_levels**0.5
# set kwargs to pass to the inversion
kwargs = {
# set stopping criteria
"max_iterations": 200,
"l2_norm_tolerance": l2_norm_tolerance, # square root of the gravity noise
"delta_l2_norm_tolerance": 1.008,
"solver_damping": 0.025,
}
# run the inversion workflow, including a cross validation for the damping parameter
_ = inversion.run_inversion_workflow(
grav_df=grav_df,
starting_prisms=starting_prisms,
fname=row.results_fname,
**kwargs,
)
sampled_params_df.head()
[53]:
| grav_line_numbers | grav_noise_levels | grav_df_fname | grav_survey_df_fname | grav_line_spacing | grav_proximity | grav_proximity_skew | flight_kms | flight_kms_per_10000sq_km | filter_width_trials_fname | best_filter_width | grav_data_loss_rmse | grav_data_loss_mae | results_fname | inverted_bathymetry_fname | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 3 | 0.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 0.0 | 2.103457 | 1.163586 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 1 | 3 | 0.56 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 16000.0 | 2.117755 | 1.203714 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 2 | 3 | 1.11 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 28000.0 | 2.153094 | 1.262860 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 3 | 3 | 1.67 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 32000.0 | 2.181365 | 1.313212 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
| 4 | 3 | 2.22 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 36000.0 | 2.219025 | 1.367866 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... |
[54]:
for i, row in sampled_params_df.iterrows():
# load saved inversion results
with pathlib.Path(f"{row.results_fname}_results.pickle").open("rb") as f:
topo_results, grav_results, parameters, elapsed_time = pickle.load(f)
final_bathymetry = topo_results.set_index(["northing", "easting"]).to_xarray().topo
# sample the inverted topography at the constraint points
constraint_points = utils.sample_grids(
constraint_points,
final_bathymetry,
f"inverted_bathymetry_{i}",
coord_names=("easting", "northing"),
)
constraints_rmse = utils.rmse(
constraint_points.true_upward - constraint_points[f"inverted_bathymetry_{i}"]
)
# clip to inversion region
final_bathymetry = final_bathymetry.sel(
easting=slice(inversion_region[0], inversion_region[1]),
northing=slice(inversion_region[2], inversion_region[3]),
)
inversion_rmse = utils.rmse(bathymetry - final_bathymetry)
# save final topography to file
final_bathymetry.to_netcdf(row.inverted_bathymetry_fname)
# add to dataframe
sampled_params_df.loc[i, "constraints_rmse"] = constraints_rmse
sampled_params_df.loc[i, "inversion_rmse"] = inversion_rmse
sampled_params_df.head()
[54]:
| grav_line_numbers | grav_noise_levels | grav_df_fname | grav_survey_df_fname | grav_line_spacing | grav_proximity | grav_proximity_skew | flight_kms | flight_kms_per_10000sq_km | filter_width_trials_fname | best_filter_width | grav_data_loss_rmse | grav_data_loss_mae | results_fname | inverted_bathymetry_fname | constraints_rmse | inversion_rmse | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 3 | 0.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 0.0 | 2.103457 | 1.163586 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 47.004169 | 41.017740 |
| 1 | 3 | 0.56 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 16000.0 | 2.117755 | 1.203714 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 48.814961 | 41.368539 |
| 2 | 3 | 1.11 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 28000.0 | 2.153094 | 1.262860 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 50.702278 | 42.073615 |
| 3 | 3 | 1.67 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 32000.0 | 2.181365 | 1.313212 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 52.516714 | 42.655619 |
| 4 | 3 | 2.22 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 36000.0 | 2.219025 | 1.367866 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 54.580960 | 43.392440 |
[55]:
sampled_params_df["residual_error"] = pd.Series()
for i, row in sampled_params_df.iterrows():
grav_df = pd.read_csv(row.grav_df_fname)
sampled_params_df.loc[i, "residual_error"] = utils.rmse(
grav_df.true_res - grav_df.res
)
sampled_params_df
[55]:
| grav_line_numbers | grav_noise_levels | grav_df_fname | grav_survey_df_fname | grav_line_spacing | grav_proximity | grav_proximity_skew | flight_kms | flight_kms_per_10000sq_km | filter_width_trials_fname | best_filter_width | grav_data_loss_rmse | grav_data_loss_mae | results_fname | inverted_bathymetry_fname | constraints_rmse | inversion_rmse | residual_error | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 3 | 0.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 0.0 | 2.103457 | 1.163586 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 47.004169 | 41.017740 | 2.103081 |
| 1 | 3 | 0.56 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 16000.0 | 2.117755 | 1.203714 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 48.814961 | 41.368539 | 2.114337 |
| 2 | 3 | 1.11 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 28000.0 | 2.153094 | 1.262860 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 50.702278 | 42.073615 | 2.148062 |
| 3 | 3 | 1.67 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 32000.0 | 2.181365 | 1.313212 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 52.516714 | 42.655619 | 2.174443 |
| 4 | 3 | 2.22 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 36000.0 | 2.219025 | 1.367866 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 54.580960 | 43.392440 | 2.210145 |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 95 | 30 | 2.78 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 36000.0 | 0.777220 | 0.597805 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 22.785809 | 19.926042 | 0.787964 |
| 96 | 30 | 3.33 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 40000.0 | 0.884233 | 0.678400 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 26.194193 | 22.422551 | 0.896081 |
| 97 | 30 | 3.89 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 44000.0 | 0.988483 | 0.756277 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 29.620665 | 24.827640 | 0.998692 |
| 98 | 30 | 4.44 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 48000.0 | 1.087007 | 0.829231 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 32.911708 | 27.133341 | 1.098397 |
| 99 | 30 | 5.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 5.833333 | 0.824621 | 0.537052 | 10500.0 | 3500.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 52000.0 | 1.184134 | 0.901034 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 36.218487 | 29.395574 | 1.195451 |
100 rows × 18 columns
[56]:
sampled_params_df.to_csv(ensemble_fname, index=False)
[57]:
sampled_params_df = pd.read_csv(ensemble_fname)
sampled_params_df.head()
[57]:
| grav_line_numbers | grav_noise_levels | grav_df_fname | grav_survey_df_fname | grav_line_spacing | grav_proximity | grav_proximity_skew | flight_kms | flight_kms_per_10000sq_km | filter_width_trials_fname | best_filter_width | grav_data_loss_rmse | grav_data_loss_mae | results_fname | inverted_bathymetry_fname | constraints_rmse | inversion_rmse | residual_error | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 3 | 0.00 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 0.0 | 2.103457 | 1.163586 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 47.004169 | 41.017740 | 2.103081 |
| 1 | 3 | 0.56 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 16000.0 | 2.117755 | 1.203714 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 48.814961 | 41.368539 | 2.114337 |
| 2 | 3 | 1.11 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 28000.0 | 2.153094 | 1.262860 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 50.702278 | 42.073615 | 2.148062 |
| 3 | 3 | 1.67 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 32000.0 | 2.181365 | 1.313212 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 52.516714 | 42.655619 | 2.174443 |
| 4 | 3 | 2.22 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 58.333333 | 8.333333 | 0.489544 | 1050.0 | 350.0 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 36000.0 | 2.219025 | 1.367866 | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | ../results/Ross_Sea/ensembles/Ross_Sea_ensembl... | 54.580960 | 43.392440 | 2.210145 |
Examine results¶
[58]:
# subplots showing inverted bathymetry error
grids = []
cbar_labels = []
row_titles = []
column_titles = []
# iterate over the ensemble starting with high noise, low line numbers
# row per noise level and column per line spacing
for i, row in sampled_params_df.sort_values(
by=["grav_noise_levels", "grav_line_spacing"],
ascending=False,
).iterrows():
dif = bathymetry - xr.open_dataarray(row.inverted_bathymetry_fname)
# add to lists
grids.append(dif)
cbar_labels.append(f"RMSE: {round(utils.rmse(dif), 2)} (mGal)")
if i % num == 0:
column_titles.append(f"Spacing: {round(row.grav_line_spacing)} km")
if i < num:
row_titles.append(f"Noise: {round(row.grav_noise_levels, 1)} mGal")
fig = maps.subplots(
grids,
fig_height=8,
fig_title="Inverted bathymetry error",
fig_title_font="75p,Helvetica-Bold,black",
fig_title_y_offset="5c",
cbar_labels=cbar_labels,
cmap="balance+h0",
# hist=True,
cpt_lims=polar_utils.get_combined_min_max(
grids,
robust=True,
absolute=True,
),
cbar_font="18p,Helvetica,black",
row_titles=row_titles,
column_titles=column_titles,
row_titles_font="25p,Helvetica,black",
column_titles_font="25p,Helvetica,black",
yshift_amount=-1.2,
)
fig.show()
[59]:
fig = synth_plotting.plot_2var_ensemble(
sampled_params_df,
x="grav_proximity_skew",
y="grav_noise_levels",
x_title="Gravity proximity skew",
y_title="Gravity noise (mGal)",
background="inversion_rmse",
background_title="Bathymetry RMSE (m)",
background_robust=True,
plot_contours=[starting_bathymetry_rmse],
plot_title="with true density",
constrained_layout=False,
)
[60]:
fig = synth_plotting.plot_2var_ensemble(
sampled_params_df,
x="grav_proximity",
y="grav_noise_levels",
x_title="Gravity data proximity (km)",
y_title="Gravity noise (mGal)",
background="inversion_rmse",
background_title="Bathymetry RMSE (m)",
background_robust=True,
plot_contours=[starting_bathymetry_rmse],
plot_title="with true density",
constrained_layout=False,
)
[61]:
fig = synth_plotting.plot_2var_ensemble(
sampled_params_df,
x="grav_line_spacing",
y="grav_noise_levels",
x_title="Line spacing (km)",
y_title="Gravity noise (mGal)",
background="inversion_rmse",
background_title="Bathymetry RMSE (m)",
background_robust=True,
plot_contours=[starting_bathymetry_rmse],
plot_title="with true density",
constrained_layout=False,
)
[62]:
_ = synth_plotting.plot_ensemble_as_lines(
sampled_params_df,
y="inversion_rmse",
x="grav_noise_levels",
groupby_col="grav_line_spacing",
x_label="Gravity noise (mGal)",
cbar_label="Line spacing (km)",
trend_line=True,
horizontal_line=starting_bathymetry_rmse,
horizontal_line_label="Starting RMSE",
horizontal_line_label_loc="lower right",
plot_title="No regional field",
)
[63]:
x = "grav_proximity"
fig = synth_plotting.plot_ensemble_as_lines(
sampled_params_df,
x=x,
x_label="Gravity data proximity (km)",
y="inversion_rmse",
y_label="Bathymetry RMSE (m)",
groupby_col="grav_noise_levels",
cbar_label="Gravity noise (mGal)",
horizontal_line=starting_bathymetry_rmse,
)
[64]:
x = "grav_proximity_skew"
fig = synth_plotting.plot_ensemble_as_lines(
sampled_params_df,
x=x,
x_label="Gravity proximity skew",
y="inversion_rmse",
y_label="Bathymetry RMSE (m)",
groupby_col="grav_noise_levels",
cbar_label="Gravity noise (mGal)",
horizontal_line=starting_bathymetry_rmse,
)